A New Perspective about Moran’s Coefficient: Spatial Autocorrelation as a Linear Regression Problem

نویسنده

  • Stéphane Dray
چکیده

The computation of Moran’s index of spatial autocorrelation requires the definition of a spatial weighting matrix. The eigendecomposition of this doubly centered matrix (i.e., one that forces the sums of all rows and columns to equal zero) has interesting properties that have been exploited in various contexts: distribution properties of the Moran coefficient (MC), spatial filtering in linear models, generalized linear models, and multivariate analysis. In this article, this eigendecomposition is used to propose a new view of MC based on its interpretation in the simple context of linear regression. I use this interpretation to demonstrate the different properties of MC and also the inefficiency of this index in some situations involving simultaneous positive and negative spatial autocorrelation. I propose some new statistics and procedures for testing spatial autocorrelation, and conduct a simulation study to evaluate these new approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spatial and Temporal Prognosis of Oilseed Yield in Shandong Province

Based on the data about oilseed yield of 87 country units in Shandong province, the paper performed the Moran’s I computerization to analyze the spatial autocorrelation characteristics of the oilseed yield on country level. Results showed that the spatial pattern of the oilseed yield presented the significant agglomeration characteristics, the Moran’s I coefficient of 14 country units was noted...

متن کامل

Comparison of Spatial Compactness Evaluation Methods for Simple Genetic Algorithm Based Land Use Planning Optimization Problem

As one of the most important objectives for land use planning towards sustainability, the compactness could not only decrease threat to species survivability and the energy consumption, but also improve the accessibility of city and the social equity towards sustainability et al. Although there have existed several methods to evaluate compactness, the spatial autocorrelation methods have not be...

متن کامل

Accounting for and Predicting the Influence of Spatial Autocorrelation in Water Quality Modeling

Several studies in the hydrology field have reported differences in outcomes between models in which spatial autocorrelation (SAC) is accounted for and those in which SAC is not. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC, inherently possessed by a response variable, influences spatial modeling outcomes. We sele...

متن کامل

New Approaches for Calculating Moran’s Index of Spatial Autocorrelation

Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran's index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran's...

متن کامل

Assessment of grass/shrub habitat fragmentation in the Whitewater Watershed using GIS and Spatial Linear Regression to model Sensitive Species Population

Fragmentation analysis of the Whitewater watershed, in southeast Minnessota, revealed 4 structural measures of grass-shrub habitat that were significant predictors of sensitive species population densities. Models were developed using simple linear regression and further refined to incorporate spatial autocorrelation using a Moran’s test. Significant variables were divided into a five class ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011